Chain-constrained spanning trees

نویسندگان

  • Neil Olver
  • Rico Zenklusen
چکیده

We consider the problem of finding a spanning tree satisfying a family of additional constraints. Several settings have been considered previously, the most famous being the problem of finding a spanning tree with degree constraints. Since the problem is hard, the goal is typically to find a spanning tree that violates the constraints as little as possible. Iterative rounding has become the tool of choice for constrained spanning tree problems. However, iterative rounding approaches are very hard to adapt to settings where an edge can be part of more than a constant number of constraints. We consider a natural constrained spanning tree problem of this type, namely where upper bounds are imposed on a family of cuts forming a chain. Our approach reduces the problem to a family of independent matroid intersection problems, leading to a spanning tree that violates each constraint by a factor of at most 9. We also present strong hardness results: among other implications, these are the first to show, in the setting of a basic constrained spanning tree problem, a qualitative difference between what can be achieved when allowing multiplicative as opposed to additive constraint violations. This project was supported by NSF Grant CCF-1115849, an NWO Veni grant, and Swiss National Science Foundation Grant 200021_165866. B Neil Olver [email protected]; [email protected] Rico Zenklusen [email protected] 1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 2 CWI, Amsterdam, The Netherlands 3 ETH Zurich, Zurich, Switzerland

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

Encoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys

Permutations of vertices can represent constrained spanning trees for evolutionary search via a decoder based on Prim’s algorithm, and random keys can represent permutations. Though we might expect that random keys, with an additional level of indirection, would provide inferior performance compared with permutations, a genetic algorithm that encodes spanning trees with random keys is as effect...

متن کامل

Hierarchies to Solve Constrained Connected Spanning Problems

Given a graph and a set of vertices, searching for a connected and minimum cost structure which spans the vertices is a classic problem. When no constraints are applied, the minimum cost spanning structure is a sub-graph corresponding to a tree. If all the vertices in the graph should be spanned the problem is referred to as minimum spanning tree (MST) construction and polynomial time algorithm...

متن کامل

Enumerating Constrained Non-crossing Geometric Spanning Trees

In this paper we present an algorithm for enumerating without repetitions all non-crossing geometric spanning trees on a given set of n points in the plane under edge constraints (i.e., some edges are required to be included in spanning trees). We will first prove that a set of all edge-constrained non-crossing spanning trees is connected via remove-add flips, based on the constrained smallest ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2013